

California Water Supply Outlook Report

May 1, 2019

Squaw Valley G.c. (784) California SNOTEL Site - 8013 ftReporting Frequency: Daily; Date Range: 2018-10-01 to 2019-09

The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers. If you believe you experienced discrimination when obtaining services from USDA, participating in a USDA program, or participating in a program that receives financial assistance from USDA, you may file a complaint with USDA. Information about how to file a discrimination complaint is available from the Office of the Assistant Secretary for Civil Rights. USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex (including gender identity and expression), marital status, familial status, parental status, religion, sexual orientation, political beliefs, genetic information, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) To file a complaint of discrimination, complete, sign, and mail a program discrimination complaint form, available at any USDA office location or online at www.ascr.usda.gov, or write to: USDA Office of the Assistant Secretary for Civil Rights 1400 Independence Avenue, SW. Washington, DC 20250-9410 Or call toll free at (866) 632-9992 (voice) to obtain additional information, the appropriate office or to request documents. Individuals who are deaf, hard of lender. Persons with disabilities who require alternative means for communication of program information (e.g., Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

Contents

California Forecast Basins, Major Rivers, and Large Reservoirs (Map)3	
State of California General Outlook4	
Streamflow Forecasts:	
Sacramento River Basin5	
San Joaquin River Basin8	
Tulare Lake Basin10	
North Coastal Area Basin11	
Klamath Basin12	
Lake Tahoe Basin14	
Truckee River Basin16	
Carson River Basin18	
Walker River Basin20	
Owens River Basin22	
Northern Great Basin23	
Lower Colorado River Basin24	
How Forecasts are Made2	5

California Forecast Basins, Major Rivers, and Large Reservoirs*

STATE OF CALIFORNIA GENERAL OUTLOOK May 1, 2019

SUMMARY

California wrapped up the winter season with a robust snowpack; by the end of April, statewide snowpack averaged 143 percent of normal. In terms of precipitation, April was comparatively dry, although above average precipitation in January, February, and March helped keep the cumulative totals 20- to 30 percent above average for the season through April. Reservoir storage (not including the Colorado River) stood at 114 percent of average for April 30th, which is slightly higher than total storage at the end of March.

SNOWPACK

Snow gages in the northern-, central-, and southern mountains recorded snow water equivalents on April 30th that averaged 144-, 145-, and 139 percent of normal, respectively. A dip in the jet stream forecast for this coming 3rd week in May portends the return of colder conditions and snow at higher elevations, which could help slow the rate of snowpack decline across most or all of the Sierras through the spring.

More information is available online at http://cdec.water.ca.gov/snow/current/snow/index2.html.

PRECIPITATION

The precipitation index in the Northern Sierra region was 3.8 inches in April, which is 102 percent of the monthly average. Meanwhile, rainfall totals further south were below average; the precipitation indices for the San Joaquin- and Tulare Basin regions 45-, and 24 percent of monthly average respectively.

More information is available online at http://cdec.water.ca.gov/snow-rain.html

RESERVOIRS

Total reservoir storage (excluding Lake Powell and Lake Mead) as of March 31st stood at 114 percent of average, including 109- and 130 percent at Shasta and New Melones, respectively. Storage in Lake Mead was 54 percent of the month-end average, although snowpack in the Colorado River basin remains healthy and forecast inflows into Lake Powell between May and July are 139 percent of average.

More information is available online at http://cdec.water.ca.gov/snow/reservoir ss.html.

STREAMFLOW

Streamflow forecasts by the National Weather Service (NWS) and the California Department of Water Resources (DWR), for stations in the Sacramento, San Joaquin, Tulare, and North Coast basins range between 105- and 192 percent between April and July. May through July forecasts by NRCS for stations in the Tahoe, Truckee, Carson, and Walker River basins range between 172- and 291 percent of average. Summaries are provided below.

Sacramento River Basin

National Weather Service (NWS) streamflow forecasts at 13 sites range between 105- and 171 percent of average between April and July (APR-JUL). California Department of Water Resources' (DWR's) APR-JUL stream forecasts at 18 sites in the basin range between 145- and 177 percent of average.

SACRAMENTO RIVER BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forecast Point							
Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
Sacramento R at APR-JUL	Shasta (DWF	₹)	470	159			295
Sacramento R at APR-JUL	Shasta (NWS 519	5) 524	534	171	543	567	312
McCloud R ab Sha APR-JUL	sta (DWR)		550	145			379
McCloud R ab Sha APR-JUL	sta (NWS) 526	529	534	141	540	555	379
Pit R at Shasta APR-JUL	Lk (DWR)		1520	149			1020
Pit R at Shasta APR-JUL	Lk (NWS) 1277	1295	1330	131	1375	1468	1013
Inflow to Shasta APR-JUL OCT-SEP	Lk (DWR) 2300 6770		2670 7205	152 124		2980 7570	1756 5831
Inflow to Shasta APR-JUL	Lk (NWS) 2585	2608	2658	147	2724	2863	1803
Sacramento R nr APR-JUL OCT-SEP	Red Bluff (3150 10410	(DWR)	3770 11130	156 130		2980 11860	2421 8544
Sacramento R nr APR-JUL	Red Bluff ((NWS) 3739	3793	153	3893	4079	2479

Sacramento River Basin, cont'd

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forecast Point Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
Feather R at Lk APR-JUL	Almanor (D	WR)	590	177			333
NF Feather R at APR-JUL	Pulga (DWR	.)	1810	176			1028
NF Feather R nr APR-JUL	Prattville 334	(NWS) 340	350	105	360	378	333
MF Feather R nr APR-JUL	Clio (DWR)		150	174			86
SF Feather R at APR-JUL	Ponderosa	Dam (DWR)	190	173			110
Inflow to Orovil APR-JUL OCT-SEP	le Res (DW 2530 5745	R)	3000 6255	176 142		3420 6710	1704 4407
Inflow to Orovil	le Res (NW 2824	^(S) 2860	2920	172	2988	3207	1701
N Yuba R bl Good APR-JUL	years Bar	(DWR)	450	161			279
N Yuba R bl Good APR-JUL	years Bar 404	(NWS) 411	418	153	429	461	273
Inflow Jackson M APR-JUL	dws & Bowm	an Res (I	OWR) 180	161			112
S Yuba R nr Lang APR-JUL	s Crossing	(DWR)	380	163			233
Yuba R at Smartv APR-JUL OCT-SEP	ille (DWR) 1310 2795		1570 3070	162 135		1840 3360	968 2268
Yuba R at Smartv APR-JUL	ille (NWS) 1454	1473	1504	153	1546	1656	981

Sacramento River Basin, cont'd

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forecast Point							
Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
NF American R at APR-JUL	N FK Dam	(DWR)	430	164			262
MF American R nr APR-JUL	Auburn (D	WR)	870	167			522
MF American R nr APR-JUL	Auburn (N 783	WS) 798	815	166	836	871	490
Inflow to Union V APR-JUL	Valley Res 160	(NWS) 164	168	171	174	184	98
Silver Ck bl Cam: APR-JUL	ino Div. D	am (DWR)	280	162			173
Silver Ck bl Cam: APR-JUL	ino Div. D 245	am (NWS) 251	258	164	269	283	158
Inflow to Folsom APR-JUL OCT-SEP	17Ò0 ´		1990 3910	166 149		2390 4330	1199 2626
Inflow to Folsom APR-JUL	Res (NWS) 1924	1964	2012	163	2063	2153	1232

¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%

²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

San Joaquin River Basin

National Weather Service (NWS) streamflow forecasts at eight sites range between 142- and 188 percent of average between April and July (APR-JUL). California Department of Water Resources' (DWR's) APR-JUL stream forecasts at 12 sites in the basin range between 140- and 192 percent of average.

SAN JOAQUIN RIVER BASIN
Streamflow Forecasts - February 1, 2019

				babilities volume will			it
Forecast Point							
Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
Cherry & Eleanor APR-JUL	Cks, Hetc	ch Hetchy	(DWR) 460	146			315
Tuolumne R nr He APR-JUL	tch Hetchy	/ (DWR)	890	147			604
Tuolumne R nr He APR-JUL	etch Hetchy 810	(NWS) 825	846	142	880	919	596
Cosumnes R at Mi APR-JUL OCT-SEP	chigan Bar 200 650	(DWR)	240 695	192 183		325 785	125 379
Cosumnes R at Mi APR-JUL	chigan Bar 236	(NWS) 238	242	188	248	261	128
NF Mokelumne R n APR-JUL	ır West Poi	.nt (DWR)	690	158			437
Inflow to Pardee APR-JUL OCT-SEP	Res (DWR) 620 990		730 1105	160 148		860 1240	457 748
Inflow to Pardee APR-JUL	Res (NWS)	656	675	145	702	750	467
MF Stanislaus R APR-JUL	bl Beardsl	.ey (DWR)	520	156			334
Inflow to New Me APR-SEP OCT-SEP	950 1610	(DWR)	1080 1745	158 152		1270 1945	682 1149
Inflow to New Me APR-JUL	lones Res	(NWS) 995	1026	149	1061	1131	690

San Joaquin River Basin, cont'd

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
Inflow to New Don APR-JUL OCT-SEP	Pedro Re 1570 1280	s (DWR)	1770 2725	148 143		2040 3005	1193 1909
Inflow to New Dor APR-JUL	Pedro Re 1698	s (NWS) 1720	1768	144	1844	1965	1228
Merced R, Pohono APR-JUL	Bridge Yo	semite(DW	JR) 520	140			372
Merced R, Pohono APR-JUL	Bridge Yo	semite (N 562	ws) 577	150	594	625	384
Inflow to Lake Mc APR-JUL	Clure (NW 910	930 930	956	149	985	1041	642
San Joaquin R at APR-JUL	Mammoth F	ool (DWR)	1450	141			1026
Big Ck bl Hunting APR-JUL	ton Lk (D	WR)	135	148			91
SF San Joaquin R APR-JUL	nr Floren	ce Lk (DW	^(R) 290	144			201
Inflow to Millert APR-JUL OCT-SEP	on Lk (DW 1510 2180	r)	1760 2445	143 136		2030 2730	1228 1793
Inflow to Millert APR-JUL	on Lk (NW	^{IS}) 1902	1948	155	2028	2119	1258

¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%

²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Tulare Lake Basin

National Weather Service (NWS) streamflow forecasts at four sites range between 153- and 193 percent of average between April and July (APR-JUL). California Department of Water Resources' (DWR's) APR-JUL stream forecasts at six sites in the basin range between 151- and 170 percent of average.

TULARE LAKE BASIN
Streamflow Forecasts - May 1, 2019_____

				babilities volume will			I C
Forecast Point Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
NF Kings R nr Cl APR-JUL	iff Camp	(DWR)	360	151			239
Inflow to Pine F APR-JUL OCT-SEP	lat Res (1 1600 2230	OWR)	1830 2475	151 145		2110 2770	1210 1702
Inflow to Pine F APR-JUL		NWS) 1901	1940	158	2019	2076	1231
Kaweah R at Term APR-JUL OCT-SEP	inus Res 360 565	(DWR)	430 640	151 142		490 705	285 451
Kaweah R at Term APR-JUL	inus Res 441	(NWS) 458	471	164	498	537	288
Tule R at Succes APR-JUL OCT-SEP	s Res (DWI 80 190	₹)	100 215	159 146		130 250	63 147
Tule R at Succes APR-JUL	s Res (NWS 91	5) 93	97	153	105	113	63
Kern R nr Kernvi APR-JUL	lle (DWR)		640	167			384
Inflow to Isabel APR-JUL OCT-SEP	la Res (DW 680 985	VR)	780 1095	170 150		930 1260	458 728
Inflow to Isabel APR-JUL	la Res (NV 828	√S) 846	878	193	936	972	454

¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%

²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

North Coastal Area Basin

The National Weather Service's (NWS') and California Department of Water Resources' (DWR's) APR-JUL streamflow forecasts on the Trinity River are 142- and 158 percent of average, respectively. The NWS' APR-JUL streamflow forecast for the Scott River near Fort Jones is 146 percent of average.

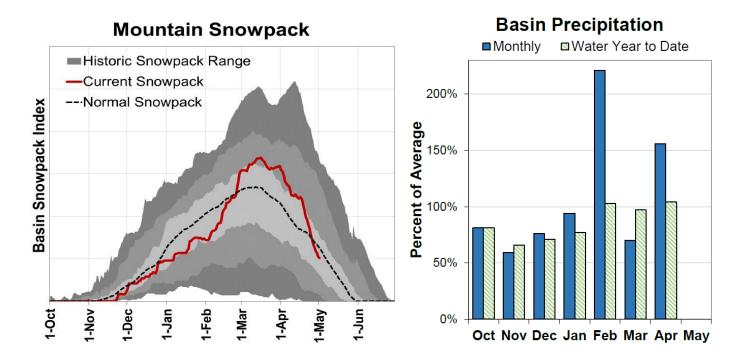
NORTH COASTAL AREA Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast Forecast Point 90% 70% 50% 30% 10% 30 Yr Avg Forecast Period (% AVG.) (KAF) (KAF) (KAF) (KAF) (KAF) (KAF) Trinity R at Lewiston (DWR) 639 APR-JUL 830 1010 158 1180 OCT-SEP 1475 1660 123 1835 1348 Inflow to Clair Engle Lk (NWS) APR-JUL 917 928 946 142 975 1033 666 Scott R nr Fort Jones (NWS) 246 252 146 258 270 173 APR-JUL 242

¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%

²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Klamath Basin


Including information from the Water Supply Outlook Report for Oregon (https://www.wcc.nrcs.usda.gov/ftpref/states/or/watersupply/2019/WSOR 2019 May.pdf):

As of May 1, the basin snowpack was 84 percent of normal. In general, SNOTEL sites in the basin reached 100- to 140 percent of normal peak snowpack levels this winter.

April precipitation was 156 percent of average. Precipitation since the beginning of the water year (October 1 - May 1) has been 104 percent of average.

Reservoir storage across the basin is currently above average. As of May 1, storage at major reservoirs in the basin ranges from 111 percent of average at Clear Lake to 140 percent of average at Gerber Reservoir.

The May through September (MAY-SEP) streamflow forecasts in the basin range from 95 percent to 122 percent of average.

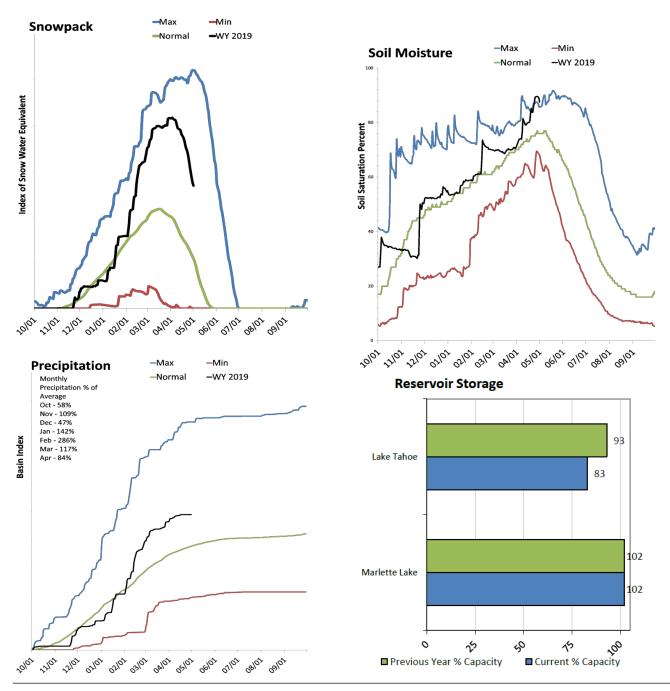
Klamath Basin (cont'd)

KLAMATH BASIN
Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Foreca	ast Point							
	Forecast	90%	70%	50%		30%	10%	30 Yr Avo
	Period	(KAF)	(KAF)	(KAF)	(% AVG.)	(KAF)	(KAF)	(KAF)
Gerbe:	r Res Inflow	v (2)						
	MAY-JUL	`0´.88	3.6	6.6	122	10.4	17.6	5.4
	MAY-SEP	1.05	4.0	7.1	122	11.1	18.5	5.8
Sprag	ue R nr Chil	Loquin						
	MAY-JUL	⁻ 79	103	119	101	135	159	118
	MAY-SEP	101	126	143	101	160	185	141
Willia	amson R bl S	Sprague R						
	MAY-JUL	134	161	180	96	199	225	187
	MAY-SEP	190	220	240	98	260	290	245
Upper	Klamath La	ce Inflow						
	MAY-JUL	141	200	225	94	255	315	240
	MAY-SEP	210	275	305	95	335	405	320

¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%


²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Lake Tahoe Basin

From the Water Supply Outlook Report for Nevada

(https://www.nrcs.usda.gov/wps/portal/nrcs/main/nv/snow/):

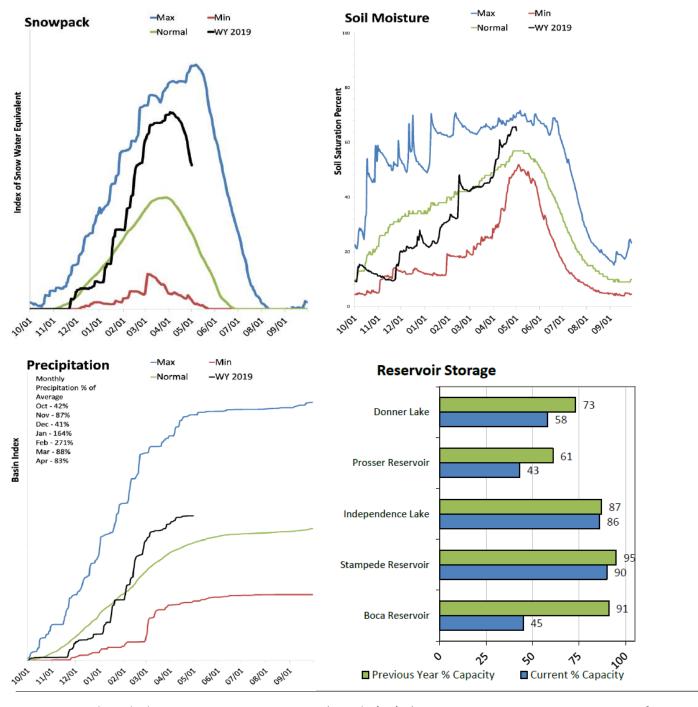
Snowpack in the Lake Tahoe Basin is much above normal at 236 percent of median, compared to 41 percent last year. Precipitation in April was below average, which brings the seasonal accumulation (Oct-Apr) to 131 percent of average. Soil moisture is at 88 percent saturation, compared to 85 percent last year. Lake Tahoe's water elevation is 6228.08 ft, which is 5.08 ft above the lake's natural rim and equals a storage of 619.1 thousand acre-feet. Last year its elevation was 6228.68 ft which equaled a storage of 692.9 thousand acre-feet. Lake Tahoe should fill to its legal limit of 6,229.1 ft this summer based on the current lake rise forecasts.

Lake Tahoe Basin (cont'd)

LAKE TAHOE BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forec	ast Point							
	Forecast	90%	70%	50%		30%	10%	30 Yr Avg
	Period	(KAF)	(KAF)	(KAF)	(% AVG.)	(KAF)	(KAF)	(KAF)
Marle	ette Lk Inflo	w (Acre-fi	t)					
	APR-JUL	Ì370	1670	1870	225	2100	2400	830
	MAY-JUL	1100	1380	1570	291	1760	2000	540
Lake	Tahoe Rise (Gates Clo	sed) (1)					
	APR-HIGH `	2.00	2.30	2.4	183	2.5	2.8	1.31
	MAY-HIGH	1.41	1.61	1.7	157	1.79	1.99	1.08
Lake	Tahoe Net In	flow						
	APR-JUL	280	306	323	223	340	366	144.6
	MAY-JUL	195	220	237	226	254	279	105.0


¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%

²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Truckee River Basin

Including information from the Water Supply Outlook Report for Nevada (https://www.nrcs.usda.gov/wps/portal/nrcs/main/nv/snow/):

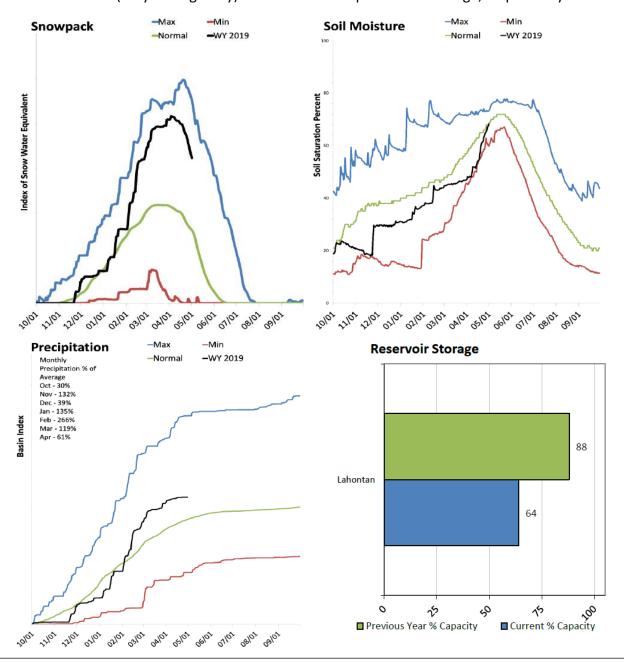
Snowpack in the Truckee River Basin is much above normal at 189 percent of median, compared to 64 percent last year. Precipitation in April was below average, which brings the seasonal accumulation (Oct-Apr) to 123 percent of average. Soil moisture is at 65 percent saturation, compared to 61 percent last year. Combined reservoir storage is 79 percent of capacity, compared to 90 percent last year. Forecast streamflow volumes between May and July (MAY-JUL) range from 172- to 290 percent of average.

Truckee River Basin (cont'd)

TRUCKEE RIVER BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

	Clia	iice ciiac a	actuar vo	Tulle WIII	exceed 101	ecast	
Forecast Point							
Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
Donner Lake Infl							
APR-JUL MAY-JUL	27 17.6	29 19.6	31 21	174 172	33 22	35 24	17.84 12.24
Martis Ck Res Ir	nflow						
APR-JUL MAY-JUL	20 8.8	$22 \\ 10.7$	23 12	245 212	24 13.3	26 15.2	9.39 5.66
Prosser Ck Res 1	Inflow						
APR-JUL MAY-JUL	78 54	82 58	85 61	198 198	88 64	92 68	42.84 30.84
Independence Lk	Inflow						
APR-JUL MAY-JUL	$\begin{matrix} 19.7 \\ 17.0 \end{matrix}$	21 18.2	22 21	182 213	23 19.8	24 21	$\substack{12.10\\9.88}$
Sagehen Ck nr Tr	ruckee						
APR-JUL MAY-JUL	$\substack{12.3\\9.8}$	13.6 11.2	14.5 12.2	259 290	15.5 13.3	17.1 15.1	5.60 4.20
Stampede Res Loc	al Inflow						
APR-JUL MAY-JUL	145 90	155 101	161 109	210 200	167 117	177 128	77 54.5
L Truckee R ab E	Boca Resv						
APR-JUL MAY-JUL	163 99	173 113	180 123	205 198	187 133	197 147	88 62
Boca Res Local 1							
APR-JUL MAY-JUL	$\begin{matrix} 13.0 \\ 2.1 \end{matrix}$	$\begin{array}{c} 15.4 \\ 3.2 \end{array}$	17 4.0	309 198	18.6 4.8	21 5.9	$\begin{matrix} 5.5 \\ 2.02 \end{matrix}$
Truckee R ab Far	ad Sidewat						
APR-JUL MAY-JUL	207 151	220 163	229 171	212 208	238 179	251 191	$108 \\ 82 \cdot 1$
Truckee R at Far							
APR-JUL MAY-JUL	477 311	503 334	520 350	204 191	537 366	563 389	255 183


¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5%

²⁾ Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Carson River Basin

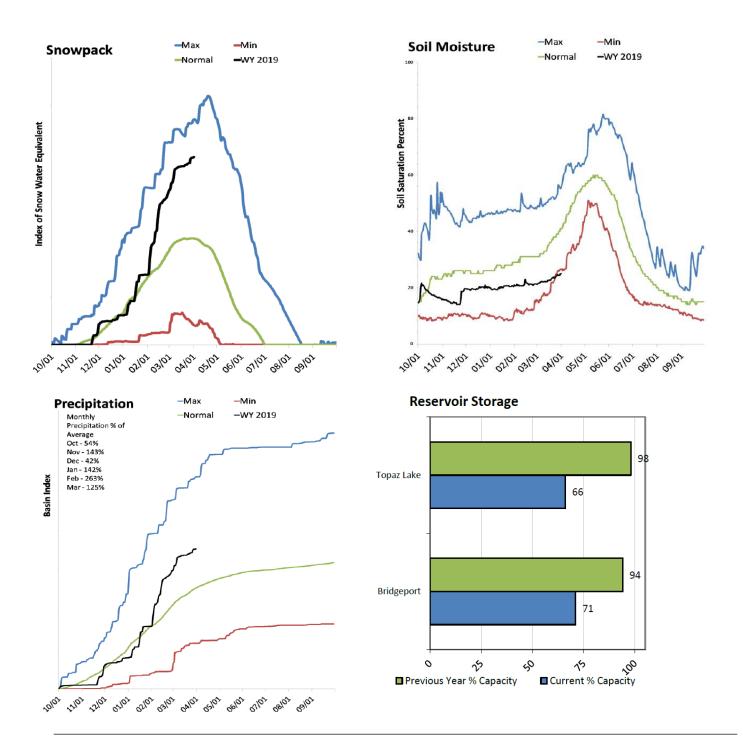
Including information from the Water Supply Outlook Report for Nevada (https://www.nrcs.usda.gov/wps/portal/nrcs/main/nv/snow/):

Snowpack in the Carson River Basin is much above normal at 209 percent of median, compared to 63 percent last year. Precipitation in April was much below average, which brings the seasonal accumulation (Oct-Apr) to 121 percent of average. Soil moisture is at 67 percent saturation, compared to 70 percent last year. Storage in Lahontan Reservoir is 64 percent of capacity, compared to 88 percent last year. Forecast streamflow volumes for the East- and West Forks of the Carson River (May through July) are 210- and 200 percent of average, respectively.

Carson River Basin (cont'd)

CARSON RIVER BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast


Forec	ast Point							
	Forecast Period	90% (KAF)	70% (KAF)	50% (KAF)	(% AVG.)	30% (KAF)	10% (KAF)	30 Yr Avg (KAF)
EF Ca	ırson R nr Ga	ardnervil	le					
	APR-JUL	330	366	390	210	414	450	186
	MAY-JUL	280	302	317	210	332	354	151
WF Ca	rson R at Wo	odfords						
	APR-JUL	91	99	105	194	111	119	54
	MAY-JUL	70	78	84	200	90	98	42

¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5% 2) Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Walker River Basin

Including information from the Water Supply Outlook Report for Nevada (https://www.nrcs.usda.gov/wps/portal/nrcs/main/nv/snow/):

Snowpack in the Walker River Basin is much above normal at 180 percent of median, compared to 63 percent last year. Precipitation in April was much below average, which brings the seasonal accumulation (Oct-Apr) to 131 percent of average. Soil moisture is at 54 percent saturation, compared to 60 percent last year. Combined reservoir storage is 65 percent of capacity, compared to 96 percent last year. Forecast streamflow volumes are on the order of 200 percent of average.

Walker River Basin (cont'd)

WALKER RIVER BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forecast Point							
Forecast	90%	70%	50%		30%	10%	30 Yr Avg
Period	(KAF)	(KAF)	(KAF)	(% AVG.)	(KAF)	(KAF)	(KAF)
E Walker R nr Br	idgeport						
APR-AUG	91	121	141	207	161	191	68
MAY-AUG	84	110	127	231	144	170	55
W Walker R bl L	Walker R ı	nr Colevil	.le				
APR-JUL	292	310	320	198	335	350	162
MAY-JUL	255	275	290	204	304	324	142
W Walker R nr Co	leville						
APR-JUL	305	320	330	202	345	360	163
MAY-JUL	277	293	305	213	317	333	163

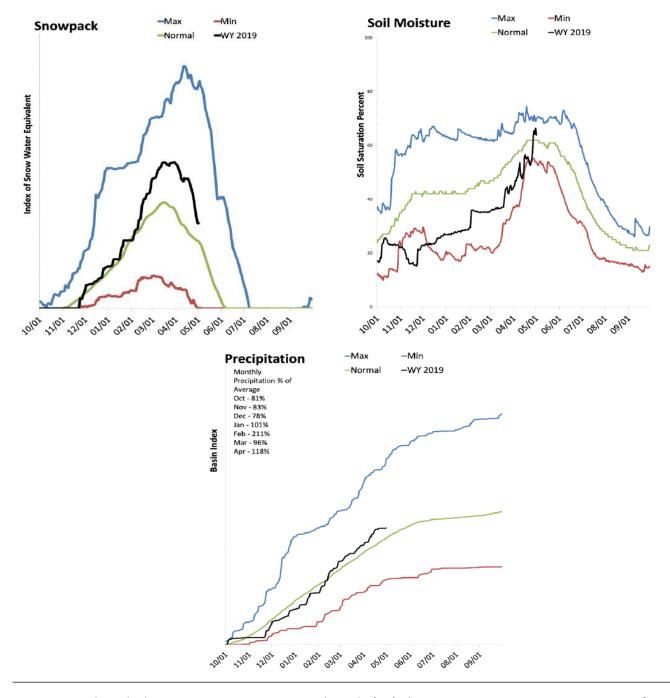
¹⁾ 90% and 10% exceedance probabilities are actually 95% and 5% 2) Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Owens River Basin

California Department of Water Resources' (DWR's) streamflow forecast remains at 145 percent of average between April and September.

OWENS RIVER BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast Forecast Point Forecast 90% 70% 50% 30% 10% 30 Yr Avg Period (KAF) (KAF) (KAF) (% AVG.) (KAF) (KAF) (KAF) Owens R (DWR) APR-SEP 334 231 145


- 1) 90% and 10% exceedance probabilities are actually 95% and 5%
- 2) Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

Northern Great Basin

From the Water Supply Outlook Report for Nevada

(https://www.nrcs.usda.gov/wps/portal/nrcs/main/nv/snow/):

Snowpack in the Northern Great Basin is above normal at 127 percent of median, compared to 58 percent last year. Precipitation in April was above average, which brings the seasonal accumulation (Oct-Apr) to 110 percent of average. Soil moisture is at 66 percent saturation, compared to 58% last year. Streamflow forecasts for Davis Creek, Bidwell Creek and Eagle Creek have been discontinued until stream gaging can be re-established.

Lower Colorado River Basin

Including information from the Water Supply Outlook Report for Nevada (https://www.nrcs.usda.gov/wps/portal/nrcs/main/nv/snow/):

As of April 30, 2019, reservoir storage at Lake Mead was at 41 percent of capacity, up 380 thousand acre-feet (KAF) from this time last year. Snowpack in the Colorado River Basin above Glen Canyon Dam held steady at 134 percent of the median, compared to 73 percent last year. The forecast unimpaired streamflow volume for Lake Powell Inflow is 139 percent of average for May through July. Note that the actual flow will be dependent on upstream reservoir management and diversions.

Reservoir Storage	Current	Last Year	Average	Capacity
End of April, 2019	(KAF)	(KAF)	(KAF)	(KAF)
Lake Mead	10767.0	10387.0	20158.0	26159.0
Lake Mohave	1685.0	1677.0	1678.0	1810.0
Basin-wide Total	12452.0	12064.0	21836.0	27969.0
# of reservoirs	2	2	2	2

COLORADO RIVER BASIN Streamflow Forecasts - May 1, 2019

Forecast Exceedance Probabilities for Risk Assessment Chance that actual volume will exceed forecast

Forecast Point									
Forecast	90%	70%	50%		30%	10%	30 Yr Avg		
Period (KA	(KAF)	(KAF)	(KAF)	(% AVG.)	(KAF)	(KAF)	(KAF)		
Lake Powell Infl	(-)								
APR-JUL	7970	8970	9690	135	10400	11600	7160		
MAY-JUL	6730	7730	8450	139	9190	10400	6100		

- 1) 90% and 10% exceedance probabilities are actually 95% and 5%
- 2) Forecasts are for unimpaired flows. Actual flow will be dependent on management of upstream reservoirs and diversions

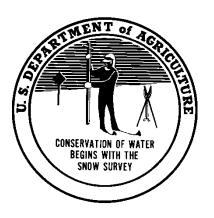
How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snowcourses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

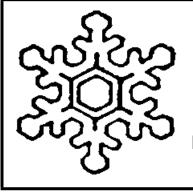
The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

This publication is posted with other Water Supply Outlook Reports for California at: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ca/snow/.


For questions, contact Greg Norris, California NRCS, at Greg.Norris@usda.gov

To join a subscription list for future reports, send an email with "WSOR subscribe" in the subject header to Julia.Grim@usda.gov

Issued by


Matthew Lohr, Chief Natural Resources Conservation Service U.S. Department of Agriculture Released by

Carlos Suarez, State Conservationist Natural Resources Conservation Service Davis, CA

YOU MAY OBTAIN THIS PRODUCT AS WELL AS CURRENT SNOW, PRECIPITATION, TEMPERATURE AND SOIL MOISTURE, RESERVOIR, SURFACE WATER SUPPLY INDEX, AND OTHER DATA BY VISITING OUR WEB SITE:

www.nrcs.usda.gov/wps/portal/nrcs/main/ca/snow/

) California Water Supply ക്ര Outlook Report

USDA
Natural Resources Conservation Service
Davis, CA

